Factor analysis models via I-divergence optimization
نویسندگان
چکیده
Given a positive definite covariance matrix [Formula: see text] of dimension n, we approximate it with a covariance of the form [Formula: see text], where H has a prescribed number [Formula: see text] of columns and [Formula: see text] is diagonal. The quality of the approximation is gauged by the I-divergence between the zero mean normal laws with covariances [Formula: see text] and [Formula: see text], respectively. To determine a pair (H, D) that minimizes the I-divergence we construct, by lifting the minimization into a larger space, an iterative alternating minimization algorithm (AML) à la Csiszár-Tusnády. As it turns out, the proper choice of the enlarged space is crucial for optimization. The convergence of the algorithm is studied, with special attention given to the case where D is singular. The theoretical properties of the AML are compared to those of the popular EM algorithm for exploratory factor analysis. Inspired by the ECME (a Newton-Raphson variation on EM), we develop a similar variant of AML, called ACML, and in a few numerical experiments, we compare the performances of the four algorithms.
منابع مشابه
Formation of Poly(vinylidenefluoride) Nanofibers: Part I Optimization by Using of Central Composite Design
Poly(vinylidene fluoride) (PVDF) nanofibers were prepared via electrospinning process. Several different factors influence on this process and application of experimental design for its optimization is of great importance. The central composite design (CCD) was used for planning and optimizing of the experiments and also, the analysis of variance (ANOVA) was employed for the statistical va...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملAlternating I-divergence minimization in factor analysis
In this paper we attempt at understanding how to build an optimal approximate normal factor analysis model. The criterion we have chosen to evaluate the distance between different models is the I-divergence between the corresponding normal laws. The algorithm that we propose for the construction of the best approximation is of an the alternating minimization kind. Institute of Biomedical Engine...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کامل